Format

Send to

Choose Destination
Am J Pathol. 1996 Dec;149(6):1851-69.

Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma.

Author information

1
Abeilung Virusforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany.

Abstract

Abundant vasculature with increased permeability is a prominent histological feature of Kaposi's sarcoma (KS), a multifocal, cytokine-regulated tumor. Here we report on the role of vascular endothelial growth factor (VEGF) in AIDS-KS angiogenesis and vascular permeability. We demonstrate that different cytokines, which were previously shown to be active in KS development, modulate VEGF expression in KS spindle cells and cooperate with VEGF on the functional level. Northern blot analysis as well as studies on single cells using in situ hybridization revealed that VEGF expression in cultivated AIDS-KS spindle cells is up-regulated by platelet-derived growth factor-B and interleukin-1 beta. Western blot and enzyme-linked immunosorbent assay analysis of cell culture supernatants demonstrated that the VEGF protein is secreted by stimulated AIDS-KS spindle cells in sufficiently high amounts to activate proliferation of human dermal microvascular endothelial cells. Basic fibroblast growth factor did not increase VEGF expression but acted synergistically with VEGF in the induction of angiogenic KS-like lesions in a mouse model in vivo. Angiogenesis and cellularity of KS-like lesions were clearly increased when both factors were injected simultaneously into the flanks of mice, compared with separate injection of each factor. A comparable angiogenic reaction as obtained by simultaneous injection of basic fibroblast growth factor and VEGF was observed when cell culture supernatants of AIDS-KS spindle cells were used for these experiments. Finally, analysis of primary human AIDS-KS lesions revealed that high amounts of VEGF mRNA and protein were present in KS spindle cells in vivo. These data provide evidence that VEGF, in concert with platelet-derived growth factor-B, interleukin-1 beta, and basic fibroblast growth factor, is a key mediator of angiogenesis and vascular permeability in KS lesions in vivo.

PMID:
8952523
PMCID:
PMC1865351
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center