Format

Send to

Choose Destination
See comment in PubMed Commons below
Stem Cells. 1996 Nov;14(6):632-41.

Regulation of T cell apoptosis via T cell receptors and steroid receptors.

Author information

  • 1Project Research Center, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan.

Abstract

Less than 5% of immature CD4/CD8 double-positive (DP) thymocytes are positively selected to survive and differentiate into single-positive CD4 and CD8 T cells, while self-reactive DP thymocytes undergo apoptosis (negative selection). Both positive and negative selection events are active processes that involve signaling through the T cell receptors (TCRs) and through some accessory molecules. The two events differ quantitatively in the strength of the interaction between TCR and peptide/major histocompatibility complex molecules. We established an in vitro model of positive selection that can be analyzed quantitatively. Positive selection is likely to inhibit glucocorticoid-induced apoptosis in DP thymocytes. Proper crosslinking of TCR together with CD4, CD8, or LFA-1 inhibits the death, and its inhibitory activity is mimicked by proper combinations of ionomycin, a calcium ionophore, and phorbol myristate acetate (PMA), a protein kinase C (PKC) activator. The drug concentrations are within narrow ranges, and are lower than those which are required for the proliferation of mature T cells. Transient stimulation with the combinations of ionomycin and PMA induces differentiation and commitment of isolated DP thymocytes to the CD4 or CD8 T cell lineage in suspension cultures. The level of PKC activity appears to determine the lineage to commit. Functional mature T cells are induced from the committed cells upon secondary stimulation. Activation of calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, also appears to be essential for positive selection as well as for the inhibition of glucocorticoid-induced apoptosis. Negative selection and the regulation of mature T cell apoptosis through TCR and steroid receptors are also discussed.

PMID:
8948021
DOI:
10.1002/stem.140632
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center