Send to

Choose Destination
Am J Physiol. 1996 Nov;271(5 Pt 2):R1422-8.

Cachectic effect of ciliary neurotrophic factor on innervated skeletal muscle.

Author information

Department of Pharmacology, Synergen, Boulder 80301, USA.


Recombinant human ciliary neurotrophic factor (rh-CNTF) was reported to attenuate skeletal muscle wasting in rats after unilateral transection of the sciatic nerve (M. E. Helgren, S. P. Squinto, H. L. Davis, D. J. Parry, T. G. Bolton, C. S. Heck, Y. Zhu, G. D. Yancopoulos, R. M. Lindsay, and P. S. DiStefano. Cell 76: 493-504, 1994). Under the experimental conditions reported herein, the absolute masses of the denervated gastrocnemius and soleus muscles were not increased in mature or immature rats of either sex by treatment with rhCNTF. At the highest doses of rhCNTF (1 and 0.1 mg/kg), increases in the ratio of the masses of the denervated to the contralateral innervated gastrocnemius and soleus muscles could be attributed entirely to a muscle-wasting effect on the contralateral innervated muscle rather than any muscle-sparing effect on the denervated muscle. The muscle-wasting effects of rhCNTF were associated with reductions in body weight gain and reduced food intake. Pair-fed rats lost less body weight and skeletal muscle mass than rhCNTF-injected freely fed rats but experienced significantly greater loss of visceral mass. Male rats displayed greater loss of body weight and skeletal muscle mass than female rats. Recombinant inhibitors of the cachectic cytokines, tumor necrosis factor and interleukin-1, did not significantly alter the wasting effects of rhCNTF. These findings demonstrate that, in contrast to its well-characterized trophic effects on cells of the nervous system, rhCNTF causes atrophy of skeletal muscle by mechanisms involving both anorexia and cachexia based on the results of pair-feeding experiments.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center