Send to

Choose Destination
See comment in PubMed Commons below
Calcif Tissue Int. 1996 Dec;59(6):500-4.

Continuous mechanical loading alters properties of mechanosensitive channels in G292 osteoblastic cells.

Author information

Basic Science Division, NYU College of Dentistry, 345 E. 24th St., New York, NY 10010, USA.


G292 osteoblastic cells were cultured in dishes made with a flexible base of polytetrafluoroethylene (PTFE) and stretched ( approximately 1% strain level) continuously for 48 hours. Patch-clamp recording techniques were then used to monitor single channel currents of mechanosensitive ion channels in these cells. To stimulate mechanosensitive channels, we applied suction to the membrane, expressed as -cm Hg, directly through the patch pipette. GigaOhm seals were obtained on a total of 33 osteoblasts that contained a high-conductance ( approximately 180 pS) mechanosensitive channel, all in the cell attached configuration. Of these, 18 were obtained from cells that had been stretched for either 1 (n = 6), 24 (n = 4), or 48 (n = 8) hours, and 15 were obtained in control (nonstretched) cells at either 1 (n = 2), 24 (n = 5), or 48 (n = 8) hours. For unstrained cells, applied pressures ranging from -1 to -5 cm Hg increased the probability of channel opening (Popen) from 0.05 +/- 0. 01 (mean + SEM) to 0.12 +/- 0.07. By contrast, for the same values of applied pressure in stretched cells, Popen ranged from 0.06 +/- 0. 01 to 0.49 +/- 0.15. Our results suggest that intrinsic properties of mechanosensitive ion channels in the G292 osteoblastic cell may be modulated by continuous mechanical loading of the cell itself.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center