Send to

Choose Destination
Curr Biol. 1996 Nov 1;6(11):1435-44.

The Shc adaptor protein is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate protein-protein interactions.

Author information

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.



Signal transduction initiated by a wide variety of extracellular signals involves the activation of protein-tyrosine kinases. Phosphorylated tyrosine residues in activated receptors or docking proteins then function as binding sites for the Src homology 2 (SH2) or phosphotyrosine-binding (PTB) domains of cytoplasmic signalling proteins. Shc is an adaptor protein that contains both PTB and SH2 domains and becomes phosphorylated on tyrosine in response to many different extracellular stimuli. These results have suggested that Shc is a prominent effector of protein-tyrosine kinase signalling. Thus far, only a single Shc phosphorylation site, the tyrosine at position 317 (Y317) has been identified. Phosphorylation of Y317 has been implicated in Grb2 binding and activation of the Ras pathway.


Here, we report the identification of two major and novel Shc tyrosine phosphorylation sites, Y239 and Y240. These residues are present in the central proline-rich (CH1) region and are conserved in all isoforms of Shc. Y239/240 are co-ordinately phosphorylated by the Src protein-tyrosine kinase in vitro, and in response to epidermal growth factor stimulation or in v-src-transformed cells in vivo. Mutagenesis studies indicate that Y239/240 make an important contribution to the association of Shc with Grb2. Phosphopeptide-binding studies suggest that these two tyrosine residues may be involved in interactions with a number of cellular proteins.


Shc is the most prominent general substrate for protein-tyrosine kinases in vivo. The identification of two novel Shc phosphorylation sites indicates that Shc has the potential to interact with multiple downstream effectors. Shc Y239/240 are highly conserved in evolution, suggesting that the phosphorylation of these residues is of fundamental importance. We propose that distinct Shc phosphorylation isomers from different signalling complexes and thereby activate separate downstream signalling cascades.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center