Format

Send to

Choose Destination
Mol Microbiol. 1996 Nov;22(3):427-36.

Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti.

Author information

1
Lehrstuhl für Genetik, Universität Regensburg, Germany.

Abstract

Cells of Rhizobium meliloti swim by the unidirectional, clockwise rotation of their right-handed helical flagella and respond to tactic stimuli by modulating the flagellar rotary speed. We have shown that wild-type cells respond to the addition of proline, a strong chemoattractant, by a sustained increase in free-swimming speed (chemokinesis). We have examined the role of two response regulators, CheY1 and CheY2, and of CheA autokinase in the chemotaxis and chemokinesis of R. meliloti by comparing wild-type and mutant strains that carry deletions in the corresponding genes. Swarm tests, capillary assays, and computerized motion analysis revealed that (i) CheY2 alone mediates 60 to 70% of wild-type taxis, whereas CheY1 alone mediates no taxis, but is needed for the full tactic response; (ii) CheY2 is the main response regulator directing chemokinesis and smooth swimming in response to attractant, whereas CheY1 contributes little to chemokinesis, but interferes with smooth swimming; (iii) in a CheY2-overproducing strain, flagellar rotary speed increases upon addition and decreases upon removal of attractant; (iv) both CheY2 and CheY1 require phosphorylation by CheA for activity. We conclude that addition of attractant causes inhibition of CheA kinase and removal causes activation, and that consequent production of CheY1-P and CheY2-P acts to slow the flagellar motor. The action of the chief regulator, CheY2-P, on flagellar rotation is modulated by CheY1, probably by competition for phosphate from CheA.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center