Send to

Choose Destination
See comment in PubMed Commons below
Exp Neurol. 1996 Dec;142(2):203-16.

Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways.

Author information

The Division of Neurobiology, National Institute for Medical Research, MRC, London, United Kingdom.


The present study tests whether lesions small enough to allow the rapid reestablishment of a normally aligned tract glial framework would provide a permissive environment for the regeneration of cut adult CNS axons. We made penetrating microlesions which cut a narrow beam of axons in the adult rat cingulum, but caused minimal damage to the tract glial framework and no cavitation. The proximal tips of cut axons were identified by enhanced immunoreactivity for low affinity neurotrophin receptor, p75. From 1 day they became expanded into large growth-cone-like structures. At later times some axons turned back and extended in the reverse direction. Up to 14 days (after which time p75 could no longer be used as a marker), no axons advanced beyond the line of the lesion. From 1 to 2 days, OX42 immunostaining and electron microscopy showed that the lesion site was densely infiltrated by macrophages, which disappeared by 3 to 4 days. This was followed by a local hypertrophy of the OX42 immunoreactive resident tract microglial cells and an increase in both GFAP and vimentin immunoreactivity of the tract astrocytes. These responses were greatly reduced by 8 days, when the longitudinal alignment of glial processes across the lesion site was similar to that of an undamaged tract. The large growth-cone-like structures formed at the ends of the cut axons resemble those of developing axons exposed to chemorepulsive factors. This suggests that cellular elements in adult tract lesions may also exert chemorepulsive influences blocking regeneration of axons even in an apparently "open" tract framework.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center