Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people

Clin Exp Pharmacol Physiol. 1996 Sep;23(9):766-76. doi: 10.1111/j.1440-1681.1996.tb01178.x.

Abstract

1. The development of speech processing strategies for multiple-channel cochlear implants has depended on encoding sound frequencies and intensities as temporal and spatial patterns of electrical stimulation of the auditory nerve fibres so that speech information of most importance of intelligibility could be transmitted. 2. Initial physiological studies showed that rate encoding of electrical stimulation above 200 pulses/s could not reproduce the normal response patterns in auditory neurons for acoustic stimulation in the speech frequency range above 200 Hz and suggested that place coding was appropriate for the higher frequencies. 3. Rate difference limens in the experimental animal were only similar to those for sound up to 200 Hz. 4. Rate difference limens in implant patients were similar to those obtained in the experimental animal. 5. Satisfactory rate discrimination could be made for durations of 50 and 100 ms, but not 25 ms. This made rate suitable for encoding longer duration suprasegmental speech information, but not segmental information, such as consonants. The rate of stimulation could also be perceived as pitch, discriminated at different electrode sites along the cochlea and discriminated for stimuli across electrodes. 6. Place pitch could be scaled according to the site of stimulation in the cochlea so that a frequency scale was preserved and it also had a different quality from rate pitch and was described as tonality. Place pitch could also be discriminated for the shorter durations (25 ms) required for identifying consonants. 7. The inaugural speech processing strategy encoded the second formant frequencies (concentrations of frequency energy in the mid frequency range of most importance for speech intelligibility) as place of stimulation, the voicing frequency as rate of stimulation and the intensity as current level. Our further speech processing strategies have extracted additional frequency information and coded this as place of stimulation. The most recent development, however, presents temporal frequency information as amplitude variations at a constant rate of stimulation. 8. As additional speech frequencies have been encoded as place of stimulation, the mean speech perception scores have continued to increase and are now better than the average scores that severely-profoundly deaf adults and children with some residual hearing obtain with a hearing aid.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Cochlea / pathology
  • Cochlea / physiopathology
  • Cochlear Implants*
  • Electric Stimulation
  • Electrophysiology
  • Evoked Potentials, Auditory, Brain Stem / physiology
  • Humans
  • Pitch Perception
  • Speech Perception
  • Vestibulocochlear Nerve / physiology*