Send to

Choose Destination
See comment in PubMed Commons below
Genome Res. 1996 Oct;6(10):922-34.

Transcriptional analysis of the candidate region for incontinentia pigmenti (IP2) in Xq28.

Author information

Deutsches Krebsforschungszentrum, Abteilung Molekulare Genomanalyse, Heidelberg, Germany.


The hereditary form of incontinentia pigmenti (IP2) is a rare disorder characterized by abnormalities of the tissues and organs derived from the ectoderm and neuroectoderm and has been linked to Xq28 distal to the factor VIII gene (F8C). Four YAC clones covering the 1.1-Mb candidate region at the telomere of Xq28 were subjected to direct cDNA selection and Alu long-range PCR. The products of both methods were subsequently used to isolate 154 cosmid clones that were assembled into five cosmid contigs. This first-generation cosmid map covered the region almost entirely and was used as a basis for constructing a transcript map that was in turn integrated with the physical YAC and cosmid maps. To isolate specifically coding sequences, exon trapping and cDNA selection methods were combined. Exon trapping was carried out on YAC Alu-PCR products, YAC Alu long-range PCR products, and on pools of cosmids. The region-specific enriched cDNA library was then screened by using the exon trap products as complex probes. To ensure a more complete analysis, the products from cDNA selection experiments were also used to screen conventional oligo(dT) primed cDNA libraries. Twenty overlapping cDNA contigs were assembled and computer analyses were performed to identify EST hits, open reading frames, protein motifs, and protein sequence homologies. Five of the cDNA contigs corresponded to known sequences such as the factor VIII, c6.1A, and c6.1B. genes, and both distal copies of the factor VIII intron 22 repeat sequence. Expression patterns of the 15 new cDNA contigs were analyzed by Northern blot and RT-PCR studies and these data were integrated with expression data obtained from known EST sequences. Although a more detailed analysis of this 1.1-Mb region with respect to the structure and function of the genes will only ultimately be possible by a global sequencing approach, an analysis of all novel transcripts as candidate genes for incontinentia pigmenti is already in progress.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center