Send to

Choose Destination
FASEB J. 1996 Oct;10(12):1378-87.

The eIF-2alpha kinases and the control of protein synthesis.

Author information

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.


Protein synthesis is regulated in response to environmental stimuli by covalent modification, primarily phosphorylation, of components of the translational machinery. Phosphorylation of the alpha subunit of eIF-2 is one of the best-characterized mechanisms for down-regulating protein synthesis in higher eukaryotes in response to various stress conditions. Three distinct protein kinases regulate protein synthesis in eukaryotic cells by phosphorylating the alpha subunit of eIF-2 at serine-51. There are two mammalian eIF-2alpha kinases: the double-stranded RNA-dependent kinase (PKR) and heme-regulated inhibitor kinase (HRI), and the yeast GCN2. The regulatory mechanisms and the molecular sizes of these eIF-2alpha kinases are different. The expression of PKR is induced by interferon, and the kinase activity is stimulated by low concentrations of double-stranded RNA. HRI is activated under heme-deficient conditions. Yeast GCN2 is activated by amino acid starvation. The phosphorylation of eIF-2alpha results in the shutdown of protein synthesis. Nevertheless, the eIF-2alpha kinases can regulate both global as well as specific mRNA translation. Inhibition of protein synthesis correlates with eIF-2alpha phosphorylation in response to a wide variety of different stimuli, including heat shock, serum deprivation, glucose starvation, amino acid starvation, exposure to heavy metal ions, and viral infection. Finally, recent studies suggest a role for eIF-2alpha phosphorylation in the control of cell growth and differentiation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center