Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12570-4.

Light-mediated retinoic acid production.

Author information

Division of Developmental Neuroscience, E. K. Shriver Center, Waltham, MA 02254, USA.


Retinoids serve two main functions in biology: retinaldehyde forms the chromophore bound to opsins, and retinoic acid (RA) is the activating ligand of transcription factors. These two functions are linked in the vertebrate eye: we describe here that illumination of the retina results in an increase in RA synthesis, as detected with a RA bioassay and by HPLC. The synthesis is mediated by retinaldehyde dehydrogenases which convert some of the chromophore all-trans retinaldehyde, released from bleached rhodopsin, into RA. As the eye contains high levels of retinaldehyde dehydrogenases, and as the oxidation of retinaldehyde is an irreversible reaction, RA production has to be considered an unavoidable by-product of light. Through RA synthesis, light can thus directly influence gene transcription in the eye, which provides a plausible mechanism for light effects that cannot be explained by electric activity. Whereas the function of retinaldehyde as chromophore is conserved from bacteria to mammals, RA-mediated transcription is fully evolved only in vertebrates. Invertebrates differ from vertebrates in the mechanism of chromophore regeneration: while in the invertebrate visual cycle the chromophore remains bound, it is released as free all-trans retinaldehyde from illuminated vertebrate rhodopsin. RA synthesis occurring as corollary of dark regeneration in the vertebrate visual cycle may have given rise to the expansion of RA-mediated transcriptional regulation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center