Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Oct 25;271(43):26554-60.

Initiation of glycogen synthesis in yeast. Requirement of multiple tyrosine residues for function of the self-glucosylating Glg proteins in vivo.

Author information

1
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

Abstract

The self-glucosylating proteins, Glg1p and Glg2p, are required for glycogen synthesis in Saccharomyces cerevisiae (Cheng, C., Mu., J., Farkas, I., Huang, D., Goebl M. G., and Roach, P. J. (1995) Mol. Cell. Biol. 15, 6632-6640). Glg2p was shown to be associated with carbohydrate in vivo and was released from the high molecular weight glycogen fraction by treatment with alpha-amylase. In addition, some Glg2p exists as a protein of Mr approximately 43,000, whose proportion is increased in cells lacking glycogen synthase. Unlike the mammalian counterpart, glycogenin, the yeast Glg proteins appear to require multiple Tyr residues for functionality. In Glg2p, mutation of both Tyr230 and Tyr232 is necessary to suppress self-glucosylation of purified protein in vitro. The mutant protein is still capable of transferring glucose to an exogeneous acceptor, n-dodecyl beta-D-maltoside. A small COOH-terminal region, conserved between Glg1p and Glg2p, is also important for function; mutation of Tyr367 or truncation at residue 362 impairs the ability of primed Glg2p to be elongated by glycogen synthase. Complete suppression of glycogen accumulation in vivo requires mutation of all three Tyr residues. In Glg1p, two Tyr residues are implicated, Tyr232 and Tyr600, mutation of both being required to eliminate glycogen accumulation in vivo.

PMID:
8900126
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center