Send to

Choose Destination
Development. 1996 Oct;122(10):3151-62.

Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis.

Author information

Department of Medicine, University of Cambridge, Addenbrooke's Hospital, UK.


Mature osteoclasts specifically express the purple, band 5 isozyme (Acp 5) of tartrate-resistant acid phosphatase, a binuclear metalloenzyme that can generate reactive oxygen species. The function of Acp 5 was investigated by targeted disruption of the gene in mice. Animals homozygous for the null Acp 5 allele had progressive foreshortening and deformity of the long bones and axial skeleton but apparently normal tooth eruption and skull plate development, indicating a rĂ´le for Acp 5 in endochondral ossification. Histomorphometry and mineralization density analysis of backscattered electron imaging revealed widened and disorganized epiphyseal growth plates with delayed mineralization of cartilage in 6- to 8-week-old mutant mice. The membrane bones of the skull showed increased density at all ages examined, indicating defective osteoclastic bone turnover. Increased mineralization density was observed in the long bones of older animals which showed modelling deformities at their extremities: heterozygotes and homozygous Acp 5 mutant mice had tissue that was more mineralized and occupied a greater proportion of the bone in all regions. Thus the findings reflect a mild osteopetrosis due to an intrinsic defect of osteoclastic modelling activity that was confirmed in the resorption pit assay in vitro. We conclude that this bifunctional metalloprotein of the osteoclast is required for normal mineralization of cartilage in developing bones; it also maintains integrity and turnover of the adult skeleton by a critical contribution to bone matrix resorption.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center