Format

Send to

Choose Destination
Br J Pharmacol. 1996 Oct;119(3):471-8.

Effects of cyclic GMP elevation on isoprenaline-induced increase in cyclic AMP and relaxation in rat aortic smooth muscle: role of phosphodiesterase 3.

Author information

1
Laboratoires GLAXOWELLCOME, Centre de Recherches, Les Ulis, France.

Abstract

1. In rat aortic rings precontracted with phenylephrine, the beta-adrenoceptor agonist isoprenaline (10 nM to 30 microM) produces greater relaxant effects in preparations with endothelium than in endothelium-denuded preparations. The aim of this study was to determine the mechanisms involved in this effect and in particular investigate the possibility of a synergistic action between adenosine 3':5'-cyclic monophosphate (cyclic AMP) and guanosine 3':5'-cyclic monophosphate (cyclic GMP). 2. Isoprenaline-induced relaxation of rat aortic rings precontracted with phenylephrine was greatly reduced by the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 300 microM) or the soluble guanylate cyclase inhibitors methylene blue (10 microM) or IH-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) but unaffected by indomethacin (10 microM), a cyclo-oxygenase inhibitor. Similarly, in intact rings, the concentration-response curve of forskolin (10 nM to 1 microM) was shifted to the right upon endothelium removal or treatment with methylene blue. 3. In endothelium-denuded rat aortic rings, isoprenaline-induced relaxation was potentiated by the guanylate cyclase activators atrial natriuretic factor (ANF, 1 to 10 nM) and sodium nitroprusside (SNP, 1 to 10 nM), and to a greater extent in the presence of the cyclic GMP-specific phosphodiesterase (PDE 5) inhibitor, 1,3dimethyl-6-(2-propoxy-5-methane sulphonylamidophenyl) pyrazolo [3,4-d] pyrimidin-4-(5H)-one (DMPPO, 30 nM). Relaxation induced by isoprenaline was also potentiated by the cyclic GMP-inhibited PDE (PDE 3) inhibitor cilostamide (100 nM). 4. Intracellular cyclic nucleotide levels were measured either in rat cultured aortic smooth muscle cells or in de-endothelialized aortic rings. In both types of preparation, isoprenaline (5 nM and 10 microM) increased cyclic AMP levels and this effect was potentiated by cilostamide (10 microM), by rolipram, a cyclic AMP-specific PDE (PDE 4) inhibitor (10 microM) and by cyclic GMP-elevating agents (50 nM ANF or 30 nM SNP plus 100 nM DMPPO). In isoprenaline-stimulated conditions, the increase in cyclic AMP induced by rolipram was further potentiated by cilostamide and by cyclic GMP-elevating agents. Cilostamide and cyclic GMP-elevating agents did not potentiate each other, suggesting a similar mechanism of action. 5. We conclude that in vascular smooth muscle (VSM) cells an increase in cyclic GMP levels may inhibit PDE 3 and, thereby, cyclic AMP catabolism. Under physiological conditions of constitutive NO release, and to a greater extent in the presence of the PDE 5 inhibitor DMPPO, cyclic GMP should act synergistically with adenylate cyclase activators to relax VSM.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center