Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1996 Sep;76(3):2102-6.

Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans.

Author information

1
Service de Neurologie, Hôpital de la Salpêtrière, Paris, France.

Abstract

1. We used single-pulse transcranial magnetic stimulation (TMS) to explore the temporal organization of the cortical control of memory-guided saccades in eight humans. The posterior parietal cortex (PPC) or the dorsolateral prefrontal cortex (DPFC), which are both known to be involved in the control of such saccades, were stimulated on the right side at different time intervals after the presentation of a flashed lateral visual target. The memorization delay was 2,000 ms. Single pulses were applied at 160, 260, and 360 ms after the flashed target, during the period of 700 and 1,500 ms, and finally at 2,100 ms, i.e., 100 ms after the extinguishing of the central fixation point. The effects of TMS were evaluated by calculating the percentage of error in amplitude (PEA) and latency of memory-guided saccades. The PEA was determined for the primary saccade (motor aspect) and the final eye position, i.e., after the end saccade (mnemonic aspect). Stimulation over the occipital cortex at the same time intervals served as control experiments. 2. After PPC stimulation, a significant increase in the PEA of the primary saccade and final eye position existed for contralateral saccades, compared with the PEA without stimulation, when stimulation was applied 260 ms after target presentation, but not at other time intervals. There was no significant effect on ipsilateral saccades. Latency was significantly increased bilaterally when stimulation was performed 2,100 ms after target presentation. 3. After prefrontal stimulation, a significant increase in the PEA of the primary saccade and final eye position existed for contralateral saccades, when stimulation was applied between 700 and 1,500 ms after target presentation, but not at other time intervals. There was no significant effect on ipsilateral saccades. Latency was not affected by prefrontal TMS at any stimulation times. 4. Occipital stimulation resulted in no significant effect on the PEA and latency of ipsilateral or contralateral saccades, in particular including the application at 260 ms after target presentation or during the memorization phase. 5. From these results it may be concluded that the observed effects of TMS on saccade accuracy were specific to the stimulated region and specific to the stimulation time. The PPC seems to be involved in the preparation of saccade amplitude, during the early phase of the paradigm, i.e., the sensorimotor processing period, whereas the DPFC could play a role during the later phase of the paradigm, i.e., the memorization period. Therefore in humans these results support the experimental findings suggesting that sensorimotor integration is controlled by the PPC and spatial memory by the DPFC. Furthermore, our results suggest that the PPC, although not the DPFC, plays a role in saccade triggering.

PMID:
8890321
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center