Send to

Choose Destination
Mol Biol Cell. 1996 Sep;7(9):1343-57.

Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates.

Author information

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.


Mitotic cyclins are abruptly degraded at the end of mitosis by a cell-cycle-regulated ubiquitin-dependent proteolytic system. To understand how cyclin is recognized for ubiquitin conjugation, we have performed a mutagenic analysis of the destruction signal of mitotic cyclins. We demonstrate that an N-terminal cyclin B segment as short as 27 residues, containing the 9-amino-acid destruction box, is sufficient to destabilize a heterologous protein in mitotic Xenopus extracts. Each of the three highly conserved residues of the cyclin B destruction box is essential for ubiquitination and subsequent degradation. Although an intact destruction box is essential for the degradation of both A- and B-type cyclins, we find that the Xenopus cyclin A1 destruction box cannot functionally substitute for its B-type counterpart, because it does not contain the highly conserved asparagine necessary for cyclin B proteolysis. Physical analysis of ubiquitinated cyclin B intermediates demonstrates that multiple lysine residues function as ubiquitin acceptor sites, and mutagenic studies indicate that no single lysine residue is essential for cyclin B degradation. This study defines the key residues of the destruction box that target cyclin for ubiquitination and suggests there are important differences in the way in which A- and B-type cyclins are recognized by the cyclin ubiquitination machinery.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center