Send to

Choose Destination
Am J Sports Med. 1996 Sep-Oct;24(5):622-8.

Biomechanical responses to repeated stretches in human hamstring muscle in vivo.

Author information

Team Denmark Test Center, Rigshospitalet, Copenhagen, Denmark.


To examine stiffness, energy, and passive torque in the dynamic and static phases of a stretch maneuver in the human hamstring muscle in vivo we used a test-retest protocol and a repeated stretches protocol. Resistance to stretch was defined as passive torque (in newton-meters) offered by the hamstring muscle group during passive knee extension as measured using an isokinetic dynamometer with a modified thigh pad. In 13 uninjured subjects, the knee was passively extended to a predetermined final position (0.0875 rad/ sec, dynamic phase) where it remained stationary for 90 seconds (static phase). The test-retest protocol included two tests administered 1 hour apart. On a separate occasion, five consecutive static stretches were administered separated by 30 seconds and followed by a sixth stretch 1 hour later. For the test-retest phase, stiffness and energy in the dynamic phase and passive torque in the static phase did not differ and yielded correlations of r = 0.91 to 0.99. During the static phase, passive torque declined in both tests (P < 0.0001). For the repeated stretches, decreases were observed for energy (P < 0.01) and stiffness (P < 0.05) in the dynamic phase and for passive torque (P < 0.0001) in the static phase. However, the decline in the variables returned to baseline within 1 hour. The data show that the method employed is a useful tool for measuring biomechanical variables during a stretch maneuver. This may provide a more detailed method to examine skeletal muscle flexibility.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center