Mechanism of proton permeation through chloroplast lipid membranes

Plant Physiol. 1996 Oct;112(2):759-66. doi: 10.1104/pp.112.2.759.

Abstract

Electrical measurements were carried out to investigate the contribution of chloroplast lipids to the passive proton permeability of both the thylakoid and inner-envelope membranes. Permeability coefficient and conductance to protons were measured for solvent-free bilayers made from monogalactosyldiglyceride:digalactosyldiglycerid: sulfoquinovosyldiglyceride:phosphatidylglycerol (2:1:0.5:0.5, w/w) in the presence of a pH gradient of 7.4/8.1. The permeability coefficient for protons in glycolipids was 5.5 +/- 1.1 x 10(-4) cm s-1 (n = 14). To determine whether this high H+ permeability could be explained by the presence of lipid contaminants such as weak acids, we investigated the effects of (a) bovine serum albumin, which can remove some amphiphilic molecules such as free fatty acids, (b) 6-ketocholestanol, which increases the membrane dipole potential, (c) oleic acid, and (d) chlorodecane, which increases the dielectric constant of the lipid bilayer. Our results show that free fatty acids are inefficient protonophores, as compared with carbonylcyanide-m-chlorphenythydrazone, and that the hypothesis of a weak acid mechanism is not valid with glycolipid bilayers. In the presence of deuterium oxide the H+ conductane was reduced significantly, indicating that proton transport through the glycolipid matrix could occur directly by a hydrogen bond process. The passive transport of H+ through the glycolipid matrix is discussed with regard to the activity of the thylakoid ATP synthase and the inner-envelope H(+)-ATPase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Chloroplasts / chemistry*
  • Deuterium Oxide
  • Electric Conductivity
  • Electric Impedance
  • Fatty Acids, Nonesterified / pharmacology
  • Glycolipids / metabolism*
  • Hydrocarbons, Chlorinated / pharmacology
  • Intracellular Membranes / chemistry*
  • Ionophores / pharmacology
  • Ketocholesterols / pharmacology
  • Lipid Bilayers / metabolism*
  • Oleic Acid / pharmacology
  • Permeability / drug effects
  • Protons*
  • Serum Albumin, Bovine / pharmacology
  • Water

Substances

  • Fatty Acids, Nonesterified
  • Glycolipids
  • Hydrocarbons, Chlorinated
  • Ionophores
  • Ketocholesterols
  • Lipid Bilayers
  • Protons
  • Water
  • Serum Albumin, Bovine
  • Oleic Acid
  • 6-ketocholestanol
  • Deuterium Oxide