Format

Send to

Choose Destination
J Mol Evol. 1996 Nov;43(5):536-40.

A modular domain of NifU, a nitrogen fixation cluster protein, is highly conserved in evolution.

Author information

1
Department of Clinical Biochemistry, The Centre for Cardiovascular Research, The Toronto Hospital, University of Toronto, Canada.

Abstract

hnifU, a gene exhibiting similarity to nifU genes of nitrogen fixation gene clusters, was identified in the course of expressed sequence tag (EST) generation from a human fetal heart cDNA library. Northern blot of human tissues and polymerase chain reaction (PCR) using human genomic DNA verified that the hnifU gene represented a human gene rather than a microbial contaminant of the cDNA library. Conceptual translation of the hnifU cDNA yielded a protein product bearing 77% and 70% amino acid identity to NifU-like hypothetical proteins from Haemophilus influenzae and Saccharomyces cerevisiae, respectively, and 40-44% identity to the N-terminal regions of NifU proteins from several diazatrophs (i.e., nitrogen-fixing organisms). Pairwise determination of amino acid identities between the NifU-like proteins of nondiazatrophs showed that these NifU-like proteins exhibited higher sequence identity to each other (63-77%) than to the diazatrophic NifU proteins (40-48%). Further, the NifU-like proteins of non-nitrogen-fixing organisms were similar only to the N-terminal region of diazatrophic NifU proteins and therefore identified a novel modular domain in these NifU proteins. These findings support the hypothesis that NifU is indeed a modular protein. The high degree of sequence similarity between NifU-like proteins from species as divergent as humans and H. influenzae suggests that these proteins perform some basic cellular function and may be among the most highly conserved proteins.

PMID:
8875867
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center