Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1996 Sep;71(3):1621-32.

Line-scanning microphotolysis for diffraction-limited measurements of lateral diffusion.

Author information

Institut für Medizinische Physik und Biophysik, Westfälische Wilhelms-Universität, Münster, Germany.


Fluorescence microphotolysis was combined with confocal laser-scanning microscopy to yield a method, herein referred to as line-scanning microphotolysis (LINESCAMP), for the measurement of molecular transport at a lateral resolution of approximately 0.34 microns and a temporal resolution of approximately 0.5 ms. A confocal microscope was operated in the line scan mode, while the laser beam power could be switched during scanning between low monitoring and high photolysing levels in less then a microsecond. The number and location of line segments to be photolysed could be freely determined. The length of the photolysed segments could be also chosen and was only limited by diffraction. Together with instrumentation a new, completely general, theoretical framework for the evaluation of diffusion measurements was developed. Based on the numerical simulation of diffusion processes employing a modified Crank-Nicholson scheme, the theory could be applied to any photobleaching geometry and profile as the initial condition and took into account the convolution with the microscope point spread function. With small diffraction-limited areas, the method yielded accurate values for diffusion coefficients in the range between approximately 10(-4) and 1 micron2 s-1. A first application of the method to the diffusion of a fluorescently labeled tracer inside the cell nucleus showed the potential of the method for the study of complex biological systems.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center