Format

Send to

Choose Destination
J Neurophysiol. 1996 Aug;76(2):908-26.

Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades.

Author information

1
Graduate Group in Bioengineering, University of California at Berkeley 94720, USA.

Abstract

1. We recorded visuomotor burst neurons in the deeper layers of the superior colliculus while two monkeys (Macaca fascicularis) made short-latency saccades known as express saccades to visual targets in order to determine whether the visual discharge normally seen for these cells served as the premotor burst during express saccades. We then compared saccade-related activity during express saccades with that recorded during regular latency saccades and delayed saccades. 2. Saccade latency histograms for two monkeys during trials with a temporal gap between fixation-point offset and target onset showed a distinct peak of saccades around 70-80 ms. One monkey also showed an additional peak around 125 ms. 3. Express saccades were found on the average to have the same relationship of saccade peak velocity to saccade amplitude as regular latency saccades and delayed saccades. Express saccades tended to be somewhat more hypometric than the other classes of saccades. However, express saccades were clearly visually guided and not anticipatory responses. 4. For most cells studied (33/40), express saccades were accompanied by a single, uninterrupted burst of activity beginning 40-50 ms after target onset and continuing until sometime around the end of the saccade. For a smaller group of cells (7/40), two peaks of burst activity were seen, although the second peak was smaller and tended to occur late, after saccade onset. Across all cells, the peak of visuomotor cell activity during express saccades correlated just as well with target onset as it did with saccade onset. 5. When considered as discharge temporally aligned to the onset of the saccade, bursts accompanying express saccades tended to begin at approximately the same time as that for regular and delayed saccades. However, this discharge generally peaked earlier for express than for regular and delayed saccades. Also, the magnitude of discharge for express saccades was higher than that for delayed saccades throughout the burst. 6. When considered as discharge temporally aligned to the appearance of the target, bursts began earlier for express and regular saccade trials than for delayed saccade trials. Peak discharge tended to be greater for express saccades than for the other classes of saccades. 7. The results of this investigation are consistent with the suggestion that the visual burst of visuomotor neurons in the deeper layers of the superior colliculus plays a role in the initiation of express saccades similar to that played by the premotor burst for saccades of longer latency. The elevated discharge for express saccades supports the idea that the superior colliculus plays a more critical role in express saccade generation than in the generation of longer-latency saccades. The elevated discharge also suggests that visuomotor bursters do not code one-to-one for saccade velocity nor for saccade dynamic motor error.

PMID:
8871208
DOI:
10.1152/jn.1996.76.2.908
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center