Send to

Choose Destination
Epidemiol Infect. 1996 Oct;117(2):289-95.

Genomic diversity of mec regulator genes in methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis.

Author information

Department of Hygiene, Sapporo Medical University School of Medicine, Japan.


Low-affinity penicillin-binding protein PBP-2a encoded by mecA is closely related to methicillin resistance in staphylococci, and expression of PBP-2a is controlled by regulator elements encoded by mecR1 and mecI which are located adjacent to mecA on the chromosome. Deletion or mutation which occurred in mec regulator gene is considered to be associated with constitutive production of PBP-2a. The distribution of the mec regulator genes in 176 strains of Staphylococcus aureus and 33 strains of S. epidermidis isolated from a single hospital was studied by polymerase chain reaction amplification. Most clinical isolates of methicillin-resistant S. aureus (MRSA) (94.3%) and S. epidermidis (MRSE) (83.9%) possessed both mecI and mecR1 genes (type I), whereas no mec regulator genes were detected in mecA-negative isolates. In contrast, 7 MRSA and 5 MRSE isolates were found to have incomplete regulator genes, and they were classified into three groups; strains which lacked only mecI gene (type II), strains which lacked mecI and 3'-end of mecR1 gene (type III), and strains which lacked both regulator genes (type IV). Analysis of mecI gene from all the strains having mecI by restriction fragment length polymorphism after Mse I digestion indicated that three MRSA strains possessed one of the known point mutations identified previously. These findings indicated the predominance of a single type of MRSA possessing both mecI and mecR1 in the study period and also suggested a high genomic diversity in mec regulator region of staphylococci.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center