Capacitation mechanisms, and the role of capacitation as seen in eutherian mammals

Reprod Fertil Dev. 1996;8(4):581-94. doi: 10.1071/rd9960581.

Abstract

Capacitation, the process whereby spermatozoa are rendered capable of interacting with and fertilizing the egg, was discovered more than 40 years ago. However, our understanding of it is still far from satisfactory. Several factors conspire to obfuscate studies of capacitation mechanisms: the inherent functional heterogeneity of sperm populations, the range of functions used as parameters of capacitation (whence the endpoint of the process has become conceptually uncertain), and the several profound differences between model in vitro fertilization (IVF) systems and the situation in vivo in the female reproductive tract. Recent investigations in the author's laboratory have shown that bicarbonate/CO2, an essential component for successful IVF, causes rapid changes in lipid architecture of the sperm plasma membrane and slower changes in surface coating. These changes are accompanied by membrane destabilization and cell death. Evidence suggests that bicarbonate's actions are mediated through cyclic nucleotide signalling. Of particular note is the heterogeneity in rate of response to bicarbonate shown by individual cells in the sperm populations. Taken together with other observations, the findings suggest that capacitation is a series of positive destabilizing events that eventually lead to cell death. The 'capacitated' state would then be a window of destabilization within which spermatozoa can undergo a zona-induced acrosome reaction and display hyperactivated motility. Further along the destabilization pathway, spontaneous acrosome reactions would occur before total membrane degeneration. In vivo, capacitation would be a conflict between destabilization and sperm survival. Concentrations of bicarbonate are maintained low in the cauda epididymidis, where sperm survive for long periods, and one may speculate that hormonal control of local bicarbonate/CO2 in oviducal 'storage' sites in the female tract could allow 'safe' sequestering of live spermatozoa until around the time of ovulation; the environment may then change to produce a 'capacitating' effect, whence, due to the inherent functional heterogeneity of the sequestered population, small numbers of capacitated spermatozoa are released sequentially. In this way, a succession of spermatozoa in the correct physiological state may be provided for the freshly ovulated egg.

Publication types

  • Review

MeSH terms

  • Animals
  • Bicarbonates / metabolism
  • Cell Death
  • Female
  • Fertilization
  • Male
  • Mammals / physiology*
  • Marsupialia / physiology
  • Ovum / physiology
  • Sperm Capacitation*
  • Spermatozoa / physiology*

Substances

  • Bicarbonates