Format

Send to

Choose Destination
J Comp Neurol. 1996 Aug 19;372(2):215-28.

Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice.

Author information

1
Molecular Neurobiology Laboratory, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan.

Abstract

We have immunohistochemically investigated the expression of a reeler gene-related antigen in the mouse cerebellum by using a monoclonal antibody, CR-50. This antibody probes a distinct allelic antigen present in normal but not in reeler mutant mice, and this antigen is localized in the brain regions in which morphological abnormalities occur in reeler mice (Ogawa et al., Neuron 14: 899-912, 1995). The developing normal cerebellum showed transient immunoreactivity to CR-50 in a limited set of neurons and in the extracellular space near the pial surface. An early population of CR-50-labeled cells emerged on embryonic day (E) 13 along the dorsal cerebellar surface, comprising the nuclear transitory zone (NTZ). Bromodeoxyuridine labeling revealed the time of origin of these cells to be at E11-12. From E14 to E18, some CR-50-labeled cells were stacked in the inner border of the external granular layer (EGL), whereas others were scattered in deep areas, such as the cerebellar nuclei and the surrounding intermediate zone or white matter. In the first postnatal week, these subcortical structures became immunonegative. However, CR-50 antigen was continuously produced until the second postnatal week by another population of cells occupying i) the premigratory zone (PMZ), the inner half of the EGL, and ii) the internal granular layer (IGL). These later CR-50-positive cells were smaller than the earlier type and showed the morphology typical of granule neurons. Both types of CR-50-labeled cells were positive for a DNA-binding protein, zic. By treating living cerebellar slices with CR-50, the extracellular antigen was localized as a puncutate staining pattern in the NTZ, PMZ, and molecular layer (ML), but not in the subcortical regions and IGL. Purkinje cells were negative for CR-50 and aligned as a monolayer adjacent to the PMZ, though their dendritic trees were closely associated with the extracellular CR-50-antigen in the PMZ and ML. Staining of dissociated cells suggested that the extracellular antigen is initially present throughout the surfaces of the CR-50/anti-zic double positive neurons, and is then rearranged to concentrate on their processes contacting with Purkinje cells. The spatiotemporal expressions of the CR-50 antigen in the cerebellum are consistent with the possibility that this antigen is involved in cell-cell interactions related to the histogenetic assembly of Purkinje cells.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center