Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1996 Sep;271(3 Pt 2):H1262-6.

Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite.

Author information

  • 1Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.

Abstract

We investigated the role of potassium channels in the vasodilator action of hydrogen peroxide, peroxynitrite, and superoxide on cerebral arterioles. We studied the effect of topical application of these agents in anesthetized cats equipped with cranial windows. Hydrogen peroxide and peroxynitrite induced dose-dependent dilation that was inhibited by glyburide, an inhibitor of ATP-sensitive potassium channels. Superoxide, generated by xanthine oxidase acting on xanthine in the presence of catalase, also induced dose-dependent dilation of cerebral arterioles that was unaffected by glyburide but inhibited completely by tetraethylammonium chloride, an inhibitor of calcium-activated potassium channels. The vasodilations from hydrogen peroxide, peroxynitrite, or superoxide were unaffected by inhibition of soluble guanylate cyclase with LY-83583. The findings provide pharmacological evidence that hydrogen peroxide and peroxynitrite reversibly dilate cerebral arterioles by activating ATP-sensitive potassium channels, probably through an oxidant mechanism, whereas superoxide dilates cerebral arterioles by opening calcium-activated potassium channels. Activation of soluble guanylate cyclase is not a mediator of the vasodilator action of these agents in cerebral arterioles.

PMID:
8853367
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center