Format

Send to

Choose Destination
J Neurophysiol. 1996 Jul;76(1):471-91.

A comparison of treadmill locomotion in adult cats before and after spinal transection.

Author information

1
Département de Physiologie, Faculté de Médecine, Université de Montréal, Quebec, Canada.

Abstract

1. The aim of this study was to document the kinematics and the electromyographic activity recorded from several muscles during treadmill locomotion in the same cat (N = 4), before and after spinalization by using a chronic implantation method. Because identical experimental and control conditions were used, it was possible to establish similarities and differences in the timing and amplitude of the muscular activity and kinematics under the intact and spinal conditions in the same animal. The data presented in this paper were collected when the cats had fully recuperated a stable locomotor pattern, walking at a constant speed of approximately 0.4 m/s. 2. The adult spinal cats retained many of the general locomotor features and electromyographic (EMG) characteristics seen before transection. However, there were also important differences. 3. There was a reduction in the step length that was principally due to the forward placement of the paw at the onset of the stance. Similarly, there was a decrease in the step cycle duration which was attributed to a reduction of both the stance and swing phases. 4. The overall angular excursions of the hip, knee, and ankle were generally similar, although joints were sometimes more flexed at all phases of the step cycle. In contrast, the overall excursions of the metatarsophalangeal joints was much greater in all four cats after spinalization due to a paw drag during the initial portion of the swing phase that exaggerated the plantarflexion. 5. There was an increase in the EMG amplitude of the flexor muscles at two of three joints (i.e., hip, knee, and ankle) in each cat after spinalization. The change in the EMG amplitude of the extensors did not appear to be as consistent as that observed in the flexor muscles. When looking at each cat individually, the postspinalization extensor activity decreased at two of three joints in two cats, whereas the opposite was true for the other two cats. 6. There was a delay in the onset of the knee flexor (semitendinosus) activity while the ankle dorsiflexor (tibialis anterior) activity started earlier with respect to the beginning of the swing phase. The onset of hip flexors was somewhat more variable. This change in the timing of flexor activity was most probably responsible for the paw drag at the onset of the swing phase. 7. The present results reveal that despite the few differences, the spinal cord and the hindlimbs afferents are capable of generating very good locomotor patterns with almost normal kinematics and EMG characteristics.

PMID:
8836238
DOI:
10.1152/jn.1996.76.1.471
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center