Format

Send to

Choose Destination
J Comp Neurol. 1996 Mar 18;366(4):643-55.

Non-mirror-symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex.

Author information

1
Department of Psychology, University of Washington, Seattle, USA. jaime@u.washington.edu

Abstract

In the cat, callosal connections in area 17 are largely confined to a 5-6-mm-wide strip at the 17/18 border. It is commonly thought that callosal fibers extending from between the 17/18 border regions interconnect loci that are mirror-symmetric with respect to the midline of the brain, but this idea has not been tested experimentally. The present study examined the organization of callosal linkages in the 17/18 border region of normal adult cats by analyzing the patterns of connections revealed in one hemisphere after small injections of different fluorescent tracers into the opposite 17/18 callosal region. The location of the injection sites within areas 17 and 18 was assessed by examining architectonic data and by inspecting the labeling pattern in the ipsilateral visual thalamus. Area 17 and 18 were separated by a 1-1.5-mm-wide zone of cytoarchitectonic transition rather than by a sharp border. The results show that, in general, callosal fibers interconnect loci that are not mirror-symmetric with respect to the midline. Thus, area 17 injections placed nearly 3 mm away from the 17/18 transition zone produced discrete labeled areas located preferentially within the contralateral 17/18 transition zone. However, when the injection site was within the 17/18 transition zone, labeled cells were found primarily medial and lateral to, but not within, the 17/18 transition zone in the contralateral hemisphere. Previous studies have indicated that the 17/18 transition zone contains a representation of a strip of the ipsilateral visual field. Comparison of the retinotopy of the 17/18 border region with the mirror-reversed pattern of callosal linkages found in the present study suggests that callosal fibers link points that are in retinotopic correspondence in both hemispheres.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center