Send to

Choose Destination
See comment in PubMed Commons below
Clin Exp Pharmacol Physiol. 1996 Feb;23(2):183-91.

Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis.

Author information

Department of Psychology, University of Iowa, Iowa City 52242-1407, USA.
U IA, Iowa City


1. Cardiovascular and body fluid homeostasis depends upon the activation and co-ordination of reflexes and behavioural responses. In order to accomplish this, the brain receives and processes both neural and chemical input. Once in the brain, information from sources signalling the status of the cardiovascular system and body fluid balance travels, and is integrated, throughout a widely distributed neural network. Recent studies using neuroanatomical and functional techniques have identified several key areas within this neural network. One major processing node is comprised of structures located along the lamina terminalis. 2. Structures associated with the lamina terminalis include the median preoptic nucleus (MePO) and two sensory circumventricular organs (SCVO), the subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT). Current evidence indicates that blood-borne signals, such as angiotensin II (AngII), reach SCVO (e.g. SFO) where they are transduced. This information is then carried via neural pathways to brain nuclei (e.g. MePO) where it is integrated with other inputs, such as those derived from systemic arterial blood pressure and volume receptors. 3. Because of their receptive and integrative functions, lamina terminalis structures are essential for the normal control of hormone release (e.g. vasopressin), sympathetic activation and behaviours (thirst and salt appetite), which collectively contribute to maintenance of cardiovascular and body fluid homeostasis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center