Send to

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 1996 Mar;28(3):335-42.

Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes.

Author information

Laboratory of Cellular Neurophysiology, Czech Academy of Sciences, Prague, The Czech Republic.


Acute and chronic effects of elevated extracellular concentrations of potassium ions ([K+]0) and/or noradrenaline were studied in homogenates of primary cultures of mouse astrocytes, from the cerebral cortex or the spinal cord, and of primary cultures of mouse cerebral cortical neurons. NA+, K+-ATPase activity in cerebral cortical astrocytes showed a Km value of 1.9 mM with confidence limits of 1.3-2.9 mM and a Vmax of 5.4 mumol/h/mg protein with confidence limits of 3.3-8.1 mumol/h/mg protein. Due to the high Km value, the activity of the enzyme was significantly increased by an increase in [K+]0 in the interval 5-12 mM. In cerebral cortical neurons, Vmax was lower (1.77 +/- 0.06 mumol/h/mg protein) but the affinity was higher (Km 0.43 +/- 0.8 mM). With these kinetics, there is no stimulation of enzyme activity when [K+]0 is increased beyond control levels. In spinal cord astrocytes, the relative effect of increasing [K+]0 above 6 mM was larger than in cerebral astrocytes but the absolute activity of the enzyme was lower. Na+, K+-ATPase activity in both types of astrocyte was stimulated by noradrenaline and its beta-adrenergic subtype agonist isoproterenol but mainly or exclusively at 6 mM [K+]0. Noradrenaline also caused a stimulation in cortical neurons, but at non-physiological K+ concentrations this stimulation was converted to an inhibition, and isoproterenol had no stimulatory effect. Chronic exposure of cerebral cortical astrocytes to elevated [K+]0 caused a decrease in Na+, K+-ATPase activity when enzyme activity in the cells was subsequently measured at normal [K+]0. During exposure to 30 mM [K+]0 this "down-regulation" took place within 10 min. Conversely, chronic exposure to reduced [K+]0 led to an increase in Na+, K+-ATPase activity. Chronic exposure to noradrenaline had no significant effect but there was a tendency towards an increase.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center