Format

Send to

Choose Destination
Anal Biochem. 1996 Aug 1;239(2):180-92.

Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry.

Author information

1
SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania, 19406, USA.

Abstract

We describe a new procedure that enables selective detection and sequencing of Ser-, Thr-, and Tyr-phosphopeptides at the low femtomole level in protein digests. Radiolabeling with 32P is not required, nor is prior chromatographic separation of the peptide mixture. One to two microliters of the unfractionated protein digest is infused at basic pH into an electrospray mass spectrometer at a flow rate of 20-40 nl/min using an ultra-low flow sprayer. A precursor-ion scan of m/z 79 (PO-3) produces a mass spectrum containing only the molecular ions of the phosphopeptides that are present in the sample. In cases where the protein sequence is known, the peptide molecular weights obtained are often sufficient to identify the specific sequences that are phosphorylated. If the protein sequence is not known, tandem MS with collision-induced dissociation of phosphopeptide precursor-ions may be used to obtain the amino acid sequences including the site(s) of phosphorylation. We demonstrate that phosphopeptides may be selectively detected using as little as 3 fmol of a 10 fmol/microl solution and that sequence information for a phosphopeptide in the mixture may be obtained using as little as 3 femtomole of the same solution. In addition, we show that the stoichiometry of phosphorylation at specific sites may be estimated from the ratio of the ion signals for the respective forms of the peptides observed in the normal full-scan mass spectra of the digest. These procedures are illustrated here to identify and sequence phosphopeptides from alpha-casein, a milk-derived protein possessing up to nine phosphorylation-sites. Numerous MS and tandem MS experiments were carried out on a single, 250 fmol/microl loading of the phosphoprotein digest. Phosphopeptides derived from an unexpected variant of the protein were also observed.

PMID:
8811904
DOI:
10.1006/abio.1996.0313
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center