Send to

Choose Destination
J Med Chem. 1996 Sep 13;39(19):3739-47.

Nucleosides with a twist. Can fixed forms of sugar ring pucker influence biological activity in nucleosides and oligonucleotides?

Author information

Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.


The sugar moiety of nucleosides in solution is known to exist in a rapid dynamic equilibrium between extreme Northern and Southern conformations as defined in the pseudorotational cycle. In the present work, we describe how the bicyclo[3.1.0]hexane template fixes the ring pucker of 2'-deoxy-methanocarba-nucleosides 1-5 and 12 to values corresponding to either one of these two extreme conformations that are typical of nucleosides. The syntheses of the fixed Northern conformers 1-5 were performed by Mitsunobu coupling of the heterocyclic bases with the chiral carbocyclic alcohol 6 [(1R,2S,4R,5S)-1-[(benzyloxy)methyl]-2-(tert-butyloxy)-4-hydrox ybicyclo[3.1.0]hexane], while the synthesis of the Southern conformer, (S)-methanocarba-T (12), was reported earlier. Carbocyclic thymidine (carba-T, 13) was used as a reference, flexible carbocyclic nucleoside. Antiviral evaluation of these compounds revealed a very potent antiherpetic activity associated with the Northern thymidine analogue 2, which was more powerful than the reference standard acyclovir against both HSV-1 and HSV-2. (N)-Methanocarba-T (2) was further evaluated as a component of a short oligodeoxynucleotide (ODN) phosphorothioate (5'-CTTCATTTTTTCTTC-3') where all thymidines were replaced by 2. The expected thermodynamic stability resulting from the preorganization of the pseudosugar rings into a Northern conformation, typical of A-DNA, was evident by the increase in Tm of the corresponding DNA/RNA heteroduplex. However, the rigid A-tract ODN caused loss of RNase H recruitment. A detailed conformational analysis of (N)-methanocarba-T (2) and (S)-methanocarba-T (12), as representative examples of conformationally rigid pseudorotational antipodes, revealed that in addition to their different forms of ring pucker, (S)-methanocarba-T appears to be a rather stiff molecule with fewer low-energy conformational states available compared to (N)-methanocarba-T. The syn/anti-energy barrier for these nucleoside analogues is 5-6 kcal/mol higher than for common nucleosides.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center