Send to

Choose Destination
Curr Biol. 1996 Sep 1;6(9):1134-45.

Mammalian NUMB is an evolutionarily conserved signaling adapter protein that specifies cell fate.

Author information

AMGEN Institute, Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto M5G 2C1, Canada.



Drosophila numb was originally described as a mutation affecting binary divisions in the sensory organ precursor (SOP) lineage. The numb gene was subsequently shown to encode an asymmetrically localized protein which is required for binary cell-fate decisions during peripheral nervous system development. Part of the Drosophila NUMB protein exhibits homology to the SHC phosphotyrosine-binding (PTB) domain, suggesting a potential link to tyrosine-kinase signal transduction.


A widely expressed mammalian homologue of Drosophila numb (dnumb) has been cloned from rat and is referred to here as mammalian Numb (mNumb). The mNUMB protein has a similar overall structure to dNUMB and 67 sequence similarity. Misexpression of mNumb in Drosophila during sensory nervous system precursor cell division causes identical cell fate transformations to those produced by ectopic dNUMB expression. In vitro, the mNUMB PTB domain binds phosphotyrosine-containing proteins, and SH3 domains of SRC-family tyrosine kinases bind to mNUMB presumably through interactions with proline-rich regions in the carboxyl terminus. Overexpression of full-length mNUMB in the multipotential neural crest stem cell line MONC-1 dramatically biases its differentiation towards neurons, whereas overexpression of the mNUMB PTB domain biases its differentiation away from neuronal fates.


Our results demonstrate that mNUMB is an evolutionarily conserved functional homologue of dNUMB, and establish a link to tyrosine-kinase-mediated signal transduction pathways. Furthermore, our results suggest that mNUMB and dNUMB are new members of a family of signaling adapter molecules that mediate conserved cell-fate decisions during development.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center