Send to

Choose Destination
Genet Res. 1996 Apr;67(2):109-21.

Natural repressors of P-induced hybrid dysgenesis in Drosophila melanogaster: a model for repressor evolution.

Author information

Department of Genetics, University of Leicester, UK.


Type I repressors control P element transposition and comprise full length elements and elements with small 3' deletions in the final exon. Using a sensitive assay for measuring the strength of repression of P element transposition in somatic and germline tissues, we have isolated and characterized a naturally occurring type I repressor element from a Q population of Drosophila melanogaster. We demonstrate that the almost complete repression of transposition in this population is a mixture of KP elements with intermediate levels of repression, and the strong contribution of a single 2.6 kb P element deletion derivative, which we call SR (Strong Repressor). A deletion in the final intron of SR allows for the constitutive production of a putative 75 kDa repressor protein in germline tissues in addition to the production of the 66 kDa repressor in the soma, which would result in a biparental mode of inheritance of repression. Based on the four observed classes of natural Q populations, we propose a model in which populations containing SR-like elements, capable of producing strong type I repressor constitutively, have a selective advantage over populations which rely either on maternally transmitted P cytotype or on KP-induced weak levels of repression. Such populations may subsequently spread and constitute an evolutionary stable strategy for the repression of hybrid dysgenesis in Drosophila melanogaster.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center