Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Sep 20;271(38):23424-30.

Myristoylation-dependent and electrostatic interactions exert independent effects on the membrane association of the myristoylated alanine-rich protein kinase C substrate protein in intact cells.

Author information

  • 1Howard Hughes Medical Institute, Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.


The myristoylated alanine-rich protein kinase C substrate (MARCKS) is a widely expressed, prominent substrate for protein kinase C. MARCKS is largely associated with membranes in cells, and hydrophobic interactions involving the amino-terminal myristoyl moiety are thought to play a role in anchoring MARCKS to cellular membranes. In addition, experiments in cell-free systems have suggested that electrostatic interactions between the positively charged phosphorylation site/calmodulin binding domain (PSD) of MARCKS and negatively charged membrane lipids are also involved in this association. Although it has been inferred from phosphorylation experiments, the electrostatic nature of the interaction between the PSD and membranes has not been demonstrated directly in intact cells. We expressed human MARCKS mutated in the myristoylation site and the PSD in REF52 cells; the cells were then fractionated by ultracentrifugation. Both nonmyristoylatable MARCKS and MARCKS in which the four serines in the PSD were mutated to aspartic acids, mimicking phosphorylation, exhibited decreased membrane affinity when compared to the fully myristoylated, wild-type, tetra-Ser protein or a myristoylated, tetra-Asn mutant. A double mutant, nonmyristoylatable protein in which the four serines in the PSD were mutated to aspartic acids exhibited negligible membrane association. Similar results were obtained in 293 cells that stably expressed chicken MARCKS mutated in the same domains. The double mutant, nonmyristoylatable tetra-Asp chicken protein exhibited little membrane association as determined by both subcellular fractionation and immunoelectron microscopy. These results indicate that myristoylation and electrostatic interactions involving the PSD exert independent, essentially additive effects on the membrane association of MARCKS in intact cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center