Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9471-6.

A sequential dimerization mechanism for erythropoietin receptor activation.

Author information

Department of Receptor Biology, Arris Pharmaceutical Corporation, South San Francisco, CA 94080, USA.


We have probed the interaction of human erythropoietin (EPO) with its receptor (EPO-R) by analyzing a panel of 17 EPO mutants in a variety of in vitro assays. Mutant proteins were expressed in 293s cells and quantified by using an N-terminal epitope tag in conjunction with a surface plasmon resonance assay. Receptor binding was studied using both a soluble form of the EPO-R extracellular domain in an ELISA-format binding competition assay and full-length EPO-R in transfected BaF3 cells. Proliferative activity of the mutants was also determined in the BaF3-derived cell line and was correlated with the results from binding assays. Based on the results of these assays, we identified two distinct receptor binding sites on the EPO molecule. We propose that one site, containing residues Arg-150 and Lys-152, binds initially to EPO receptor on the cell surface. A second site, containing Arg-103 and Ser-104 (and possibly Arg-14), is involved in binding a second EPO-R at the cell surface, thus forming a homodimeric receptor complex. Furthermore, we demonstrate that one EPO mutant (R103A), which has previously been shown to lack proliferative function, is in fact an EPO antagonist. Taken together, these data support a sequential dimerization mechanism of EPO-R activation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center