Send to

Choose Destination
Histochem J. 1995 Dec;27(12):974-82.

Immunohistochemical demonstration of human carbonic anhydrase isoenzyme II in brain tumours.

Author information

Department of Anatomy, University of Oulu, Finland.


Carbonic anhydrase (CA) is a functionally important enzyme in the central nervous system (CNS), where it is involved in the control of the acid-base balance and regulates the production of cerebrospinal fluid (CSF). Isoenzyme II (CA II) is the most widely distributed CA in the CNS, being present in at least myelin, oligodendrocytes, astrocytes and the choroid plexus. This study was undertaken to examine the presence of CA II in different brain tumours from 31 patients. Specific antibodies recognizing CA II were used in immunoperoxidase staining of tumour specimens. Anti-CA I and VI sera and normal rabbit serum were used as controls. CA II-positive staining was observed in all the astrocytic tumours (n = 9), oligodendrogliomas (n = 3) and medulloblastomas (n = 3). The most malignant tumours exhibited the strongest staining. In addition, four acoustic neurinomas, one plexiform neurofibroma, one choroid plexus papilloma, one ependymoblastoma and one subependymoma expressed the enzyme. Meningiomas (n = 4) and neuronal tumours (n = 4), including one dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos), were negative. Anti-CA I, VI and normal rabbit sera showed no specific staining in tumour cells. The presence of CA II in the astrocytomas was confirmed by Western blotting, which revealed a distinct 29 kDa polypeptide band corresponding the CA II. Anti-CA I serum showed similarly a single 29 kDa band, recognizing the enzyme which is abundantly present in the erythrocytes. The present results demonstrate that despite the malignant transformation of the cells, the expression of CA II is sustained in astrocytic tumours, oligodendrogliomas, ependymal and choroid plexus tumours and tumours of nerve sheath cell origin. Our results suggest that some tumours contain abundant CA II, which might leak into the CSF.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center