Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1996 Mar;70(3):1529-33.

Wavelength dependence of cell cloning efficiency after optical trapping.

Author information

  • 1Beckman Laser Institute and Medical Clinic, University of California at Irvine 92715, USA.


A study on clonal growth in Chinese hamster ovary (CHO) cells was conducted after exposure to optical trapping wavelengths using Nd:YAG (1064 nm) and tunable titanium-sapphire (700-990 nm) laser microbeam optical traps. The nuclei of cells were exposed to optical trapping forces at various wavelengths, power densities, and durations of exposure. Clonal growth generally decreased as the power density and the duration of laser exposure increased. A wavelength dependence of clonal growth was observed, with maximum clonability at 950-990 nm and least clonability at 740-760 nm and 900 nm. Moreover, the most commonly used trapping wavelength, 1064 nm from the Nd:YAG laser, strongly reduced clonability, depending upon the power density and exposure time. The present study demonstrates that a variety of optical parameters must be considered when applying optical traps to the study of biological problems, especially when survival and viability are important factors. The ability of the optical trap to alter either the structure or biochemistry of the process being probed with the trapping beam must be seriously considered when interpreting experimental results.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center