Send to

Choose Destination
Am J Physiol. 1996 Feb;270(2 Pt 1):L183-90.

Glucose transport and equilibrium across alveolar-airway barrier of rat.

Author information

Institut National de la Santé et de la Recherche Médicale U82, Faculté Xavier Bichat, Paris, France.


The glucose concentration in the epithelial lining fluid (ELF) results from a balance between cellular uptake and paracellular leakage. The present study examines whether the ELF glucose concentration can be predicted from the kinetics of glucose transport obtained in fluid-filled lungs. Isolated rat lungs were filled via the trachea with instillate containing 0-10 mM glucose; the perfusate glucose concentration was 10 mM. The rate of glucose removal from airspaces depended on luminal glucose concentration and was saturable [maximum uptake rate = 101 +/- 8.6 mumol.h-1.g dry lung wt-1; apparent Michaelis constant K(m) = 1.5 +/- 0.43 mM; R2 = 0.79]. Glucose removal was inhibited by phloridzin but not by phloretin or by inhibiting glycolysis. The steady-state concentration in fluid-filled lungs was estimated to be 0.15 +/- 0.034 mM. It agreed with that (< 1/20 plasma) calculated using glucose transport kinetics and paracellular permeability. The ELF glucose concentration obtained by bronchoalveolar lavage was 0.39 +/- 0.012 plasma in vivo and 0.39 +/- 0.021 perfusate in air-filled isolated lungs. The equilibrium ELF/perfusate distribution ratio of alpha-methyl-glucose was similar to that of glucose. Thus there is a major difference between the alveolar steady-state glucose concentration in air- and fluid-filled lungs despite similar mechanisms of airspace glucose removal. This suggests that glucose kinetics or access to uptake sites differ in air- and fluid-filled lungs.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center