Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1996 Jul;62(7):2421-6.

Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions.

Author information

  • 1Kluyver Laboratory for Biotechnology, Delft University of Technology, The Netherlands.


Nitrous oxide can be a harmful by-product in nitrogen removal from wastewater. Since wastewater treatment systems operate under different aeration regimens, the influence of different oxygen concentrations and oxygen fluctuations on denitrification was studied. Continuous cultures of Alcaligenes faecalis TUD produced N2O under anaerobic as well as aerobic conditions. Below a dissolved oxygen concentration of 5% air saturation, the relatively highest N2O production was observed. Under these conditions, significant activities of nitrite reductase could be measured. After transition from aerobic to anaerobic conditions, there was insufficient nitrite reductase present to sustain growth and the culture began to wash out. After 20 h, nitrite reductase became detectable and the culture started to recover. Nitrous oxide reductase became measurable only after 27 h, suggesting sequential induction of the denitrification reductases, causing the transient accumulation of N2O. After transition from anaerobic conditions to aerobic conditions, nitrite reduction continued (at a lower rate) for several hours. N2O reduction appeared to stop immediately after the switch, indicating inhibition of nitrous oxide reductase, resulting in high N2O emissions (maximum, 1.4 mmol liter-1 h-1). The nitrite reductase was not inactivated by oxygen, but its synthesis was repressed. A half-life of 16 to 22 h for nitrite reductase under these conditions was calculated. In a dynamic aerobic-anaerobic culture of A. faecalis, a semisteady state in which most of the N2O production took place after the transition from anaerobic to aerobic conditions was obtained. The nitrite consumption rate in this culture was equal to that in an anaerobic culture (0.95 and 0.92 mmol liter-1 h-1, respectively), but the production of N2O was higher in the dynamic culture (28 and 26% of nitrite consumption, respectively).

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center