Send to

Choose Destination
J Comp Physiol A. 1996 Aug;179(2):169-84.

Patterns of muscle activity during different behaviors in chicks: implications for neural control.

Author information

Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder 80309-0334, USA.


The large behavioral repertoire that spans the embryonic and postembryonic stages of development make chicks an ideal system for identifying patterns of muscle activity that are common to different behaviors and those that are behavior-specific. The main goal of this work was to identify the similar and dissimilar aspects of the recruitment patterns and the regulation of muscle activity during three distinct postembryonic behaviors: walking, swimming and airstepping. We identified two synergies that were common to each of these behaviors. The synergies were not disrupted by the absence of FT1 activity in airstepping. Within each synergy the recruitment time, recruitment order and duration of activity were not rigid, but varied according to the context-specific resistance that the leg encountered. Unlike the other muscles, FT2 activity was not recruited as part of the same synergy in each behavior. When weight-bearing contact with the substrate did not occur, as in swimming and airstepping, as well as in walking in chicks with deafferented legs, FT2 activity was not recruited as part of either synergy, but was recruited during the time between them. Although not identical, embryonic motility and hatching motor pattern both show the two synergies described for the postembryonic behaviors. Like the latter behaviors, the synergies tolerated the absence of activity from specific muscles. Thus, we suggest that the CNS produces different behaviors using many of the same muscles by organizing the patterned activity around two common synergies while permitting the different muscles that participate in a synergy to be modified in tandem or on an individual basis. Furthermore, the common synergies are established early during prenatal development in chicks.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center