Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 1996 Aug 1;317 ( Pt 3):843-8.

Hypoxanthine enters human vascular endothelial cells (ECV 304) via the nitrobenzylthioinosine-insensitive equilibrative nucleoside transporter.

Author information

Departamento de FisiologĂ­a y BiofĂ­sica, Universidad de Chile, Santiago, Chile.


The transport properties of the nucleobase hypoxanthine were examined in the human umbilical vein endothelial cell line ECV 304. Initial rates of hypoxanthine influx were independent of extracellular cations: replacement of Na+ with Li+, Rb+, N-methyl-D-glucamine or choline had no significant effect on hypoxanthine uptake by ECV 304 cells. Kinetic analysis demonstrated the presence of a single saturable system for the transport of hypoxanthine in ECV 304 cells with an apparent K(m) of 320 +/- 10 microM and a Vmax of 5.6 +/- 0.9 pmol/10(6) cells per s. Hypoxanthine uptake was inhibited by the nucleosides adenosine, uridine and thymidine (apparent Ki 41 +/- 6, 240 +/- 27 and 59 +/- 8 microM respectively) and the nucleoside transport inhibitors nitrobenzylthioinosine (NBMPR), dilazep and dipyridamole (apparent Ki 2.5 +/- 0.3, 11 +/- 3 and 0.16 +/- 0.006 microM respectively), whereas the nucleobases adenine, guanine and thymine had little effect (50% inhibition at > 1 mM). ECV 304 cells were also shown to transport adenosine via both the NBMPR-sensitive and -insensitive nucleoside carriers. Hypoxanthine specifically inhibited adenosine transport via the NBMPR-insensitive system in a competitive manner (apparent Ki 290 +/- 14 microM). These results indicate that hypoxanthine entry into ECV 304 endothelial cells is mediated by the NBMPR-insensitive nucleoside carrier present in these cells.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center