Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1996 Aug 15;16(16):5014-25.

Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene.

Author information

1
Center for Learning and Memory, Massachusetts Institute of Technology, Cambridge 02139-4307, USA.

Abstract

A novel strain of mutant mouse has been generated with a deletion of the gene encoding the NR2C subunit of the NMDA receptor, which is primarily expressed in cerebellar granule cells. Patch-clamp recordings from granule cells in thin cerebellar slices were used to assess the consequences of the gene deletion. In granule cells of wild-type animals, a wide range of single-channel conductances were observed (19-60 pS). The disruption of the NR2C gene results in the disappearance of low-conductance NMDA receptor channels ( < 37 pS) normally expressed in granule cells during developmental maturation. The NMDA receptor-mediated synaptic current is markedly potentiated in amplitude, but abbreviated in duration (with no net difference in total charge), and the non-NMDA component of the synaptic current was reduced. We conclude that the NR2C subunit contributes to functional heteromeric NMDA receptor-subunit assemblies at the mossy fiber synapse and extrasynaptic sites during maturation, and the conductance level exhibited by a given receptor macromolecule may reflect the stochiometry of subunit composition.

PMID:
8756432
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center