Send to

Choose Destination
Crit Rev Biochem Mol Biol. 1996 Feb;31(1):41-100.

Homeostatic control of plasma calcium concentration.

Author information

Institute of Animal Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel.


Due to the importance of Ca2+ in the regulation of vital cellular and tissue functions, the concentration of Ca2+ in body fluids is closely guarded by an efficient feedback control system. This system includes Ca(2+)-transporting subsystems (bone, and kidney), Ca2+ sensing, possibly by a calcium-sensing receptor, and calcium-regulating hormones (parathyroid hormone [PTH], calcitonin [CT], and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]). In humans and birds, acute Ca2+ perturbations are handled mainly by modulation of kidney Ca2+ reabsorption and by bone Ca2+ flow under PTH and possibly CT regulation, respectively. Chronic perturbations are also handled by the more sluggish but economic regulatory action of 1,25(OH2)D3 on intestinal calcium absorption. Peptide hormone secretion is modulated by Ca2+ and several secretagogues. The hormones' signal is produced by interaction with their respective receptors, which evokes the cAMP and phospholipase C-IP3-Ca2+ signal transduction pathways. 1,25 (OH)2D3 operates through a cytoplasmic receptor in controlling transcription and through a membrane receptor that activates the Ca2+ and phospholipase C messenger system. The calciotropic hormones also influence processes not directly associated with Ca2+ regulation, such as cell differentiation, and may thus affect the calcium-regulating subsystems also indirectly.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center