Format

Send to

Choose Destination
J Comp Neurol. 1996 Feb 19;365(4):585-93.

Axonal projection patterns of neurons in the secondary gustatory nucleus of channel catfish.

Author information

1
Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA.

Abstract

The second gustatory nucleus of teleost fishes receives ascending fibers from the primary gustatory center in the medulla and sends efferent fibers to several nuclei in the inferior lobe of the diencephalon. Similar to the corresponding parabrachial nucleus in birds and mammals, the secondary gustatory nucleus of catfish consists of several cytoarchitectonically distinct subnuclei which receive input from different portions of the primary gustatory nuclei. However, it is unclear how the subnuclear organization relates to the processing of gustatory information in the hindbrain and the subsequent transmission of that information to the forebrain. To determine whether cells within different subnuclei of the secondary gustatory nucleus of channel catfish project to different diencephalic targets, single cells were intracellularly labeled with biocytin. Three subnuclei have been identified in the secondary gustatory nucleus: a medial subnucleus spanning most of the rostrocaudal extent of the nucleus, a central subnucleus and a dorsal subnucleus, the latter two located in the rostrolateral portion of the complex. Cells throughout the secondary gustatory nucleus typically possessed similar collateral projections to several nuclei in the inferior lobe, although four of the six cells filled in the medial subnucleus projected only to nucleus centralis. The only apparent subnucleus-specific projection pattern involved cells at the rostral edge of the secondary gustatory nucleus and in the secondary visceral nucleus. Axons of these cells terminated only in restricted portions of nucleus lobobulbaris. These results suggest that efferents from different subnuclei of the secondary gustatory nucleus of catfish, like those of the parabrachial nucleus of birds and mammals, do not possess simple, topographical projections to target nuclei in the diencephalon.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center