Send to

Choose Destination
Chem Res Toxicol. 1996 Apr-May;9(3):614-22.

Identification of the heme adduct and an active site peptide modified during mechanism-based inactivation of rat liver cytochrome P450 2B1 by secobarbital.

Author information

Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA.


The olefinic barbiturate secobarbital (SB) is a sedative hypnotic known to be a relatively selective mechanism-based inactivator of rat liver cytochrome P450 2B1. Previous studies have demonstrated that such inactivation results in prosthetic heme destruction and irreversible drug-induced protein modification, events most likely triggered by P450 2B1-dependent oxidative activation of the olefinic pi-bond. However, the precise structure of the SB-modified heme and/or the protein site targeted for attack remained to be elucidated. We have now isolated the SB-heme adduct from P450 2B1 inactivated by [14C]SB in a functionally reconstituted system and structurally characterized it by electronic absorption spectroscopy and tandem collision-induced dissociation (CID), matrix-assisted laser desorption ionization on time of flight (MALDI-TOF), and liquid secondary ion mass spectrometry in the positive mode (+ LSIMS) as the N-(5-(2-hydroxypropyl)-5-(1-methylbutyl)barbituric acid)protoporphyrin IX adduct. The [14C]SB-modified 2B1 protein has also been isolated from similar inactivation systems and subjected to lysyl endopeptidase C (Lys-C) digestion and HPLC-peptide mapping. A [14C]SB-modified 2B1 peptide was thus isolated, purified, electrotransferred onto a poly-(vinylidene) membrane, and identified by micro Edman degradation of its first N-terminal 17 residues (S277NH(H)TEFH(H)ENLMISLL293) as the Lys-C peptide domain comprised of amino acids 277-323. This peptide thus includes the peptide domain corresponding to the distal helix I of P450 101, a region highly conserved through evolution, and which is known not only to flank the heme moiety but also to intimately contact the substrates. This finding thus suggests that SB-induced protein modification of P450 2B1 also occurs at the active site and, together with heme N-alkylation, contributes to the SB-induced mechanism-based inactivation of P450 2B1.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center