Send to

Choose Destination
See comment in PubMed Commons below
Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1209-16.

Crystallographic studies of elongation factor G.

Author information

Chemical Center, University of Lund, Sweden.


The elongation factors G (EF-G) and Tu (EF-Tu) go through a number of conformation states in their functional cycles. Since they both are GTPases, have similar G domains and domains II, and have similar interactions with the nucleotides, then GTP hydrolysis must occur in similar ways. The crystal structures of two conformational states are known for EF-G and three are known for EF-Tu. The conformations of EF-G.GDP and EF-Tu.GTP are closely related. EF-Tu goes through a large conformational change upon GTP cleavage. This conformational change is to a large extent due to an altered interaction between the G domain and domains II and III. A number of kirromycin-resistant mutations are situated at the interface between domains I and III. The interface between the G domain and domain V in EF-G corresponds with this dynamic interface in EF-Tu. The contact area in EF-G is small and dominated by interactions between charged amino acids, which are part of a system that is observed to undergo conformational changes. Furthermore, a number of fusidic acid resistant mutants have been identified in this area. All of this evidence makes it likely that EF-G undergoes a large conformational change in its functional cycle. If the structures and conformational states of the elongation factors are related to a scheme in which the ribosome oscillates between two conformations, the pretranslocational and posttranslocational states, a model is arrived at in which EF-Tu drives the reaction in one direction and EF-G in the opposite. This may lead to the consequence that the GTP state of one factor is similar to the GDP state of the other. At the GTP hydrolysis state, the structures of the factors will be close to superimposable.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center