Format

Send to

Choose Destination
See comment in PubMed Commons below
Annu Rev Immunol. 1996;14:619-48.

Receptors for HLA class-I molecules in human natural killer cells.

Author information

1
Dipartimento di Scienze Biomediche e Biotecnologie, Universita di Brescia, Italy.

Abstract

Natural killer cells are likely to play an important role in the host defenses because they kill virally infected or tumor cells but spare normal self-cells. The molecular mechanism that explains why NK cells do not kill indiscriminately has recently been elucidated. It is due to several specialized receptors that recognize major histocompatibility complex (MHC) class I molecules expressed on normal cells. The lack of expression of one or more class I alleles leads to NK-mediated target cell lysis. During NK cell development, the class I-specific receptors have adapted to self-class I molecules on which they recognize epitopes shared by groups of class I alleles. As such, they may fail to recognize either self-molecules that bound unusual peptides or allogeneic class I molecules unrelated to self-alleles. Different types of receptors specific for groups of HLA-C or HLA-B alleles have been identified. While in most instances, they function as inhibiting receptors, an activating form of the HLA-C-specific receptors has been identified in some donors. Molecular cloning of HLA-C- and HLA-B-specific receptors has revealed new members of the immunoglobulin superfamily with two or three Ig-like domains, respectively, in their extracellular portion. While the inhibiting form is characterized by a long cytoplasmic tail associated with a nonpolar transmembrane portion, the activating one has a short tail associated with a Lys-containing transmembrane portion. Thus, these human NK receptors are different from the murine Ly49 that is a type II transmembrane protein characterized by a C type lectin domain. A subset of cytolytic T lymphocytes expresses NK-type class I-specific receptors. These receptors exert an inhibiting activity on T cell receptor-mediated functions and offer a valuable model to analyze the regulatory mechanisms involved in receptor-mediated cell activation and inactivation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center