Send to

Choose Destination
Planta. 1996;198(3):423-32.

Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L.

Author information

Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Germany.

Erratum in

  • Planta 1996;199(1):169.


The conversion of the submerged form of Riccia fluitans to the landform either by transfer to a moist solid surface or by treatment with abscisic acid (ABA), is accompanied by the formation of a set of new polypeptides and concomitant down-regulation of other polypeptides. Changes in gene expression were analyzed by two-dimensional separations of proteins and differential screening of a cDNA library. One of the landform-specific proteins might depend on the expression of the newly discovered Ric 1 gene. The deduced amino acid sequence of the isolated Ric 1 cDNA clone codes for a protein with a molecular mass of 30.1 kDa. This polypeptide possesses two amino acid sequences which are repeated five times each and it is largely hydrophilic with the exception of a hydrophobic carboxyl-terminal region. Under ABA treatment the expression of the Ric 1 mRNA had already reached its maximum after 1 h of incubation. Transferring submerged thalli onto an agar surface resulted in a slower induction. The Ric 1 gene product shows homology to an embryo-specific polypeptide of carrot seeds and to the group 3 of late-embryogenesis-abundant (LEA) proteins. Interestingly, ABA treatment improved the desiccation tolerance of the submerged thalli. Additionally, ABA stimulated the synthesis of a protein which is immunologically related to a tonoplast protein. This finding, together with the fact that the ABA-induced landform exhibits an increased activity of several vacuolar enzymes, may indicate a special role of the tonoplast and the vacuole during ABA-induced conversion of the thallus from the submerged to the terrestrial form.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center