Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1996 Feb;75(2):963-6.

Cellular short-term memory from a slow potassium conductance.

Author information

1
Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA.

Abstract

1. We use the dynamic clamp to add the slowly inactivating and slowly recovering K+ conductance Kv1.3 to cultured stomatogastric ganglion neurons. 2. Introduction of Kv1.3 produced long delays to firing during depolarization. Additionally, the slow recovery from inactivation produced an increase in neuronal excitability after a depolarizing input that outlasted the input by many seconds. Finally, when introduced into bursting neurons, Kv1.3 produced a long-lasting depolarization-induced switch between tonic and burst firing. 3. These data demonstrate that the slow kinetics of a K+ conductance can produce a form of cellular short-term memory that is independent of any changes in synaptic efficacy.

PMID:
8714669
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center