Send to

Choose Destination
Br J Nutr. 1996 May;75(5):723-32.

Effects of long-term low-glycaemic index starchy food on plasma glucose and lipid concentrations and adipose tissue cellularity in normal and diabetic rats.

Author information

Department of Diabetes, INSERM U341, Paris, France.


The present study aimed to assess the metabolic consequences of the chronic ingestion of two starches giving different postprandial glycaemic responses in normal and diabetic rats. The two starches chosen were mung-bean (Phaseolus aureus) starch (97% pure starch) and wheat starch presented as ground French toast. First, we studied the characteristics of these two starches. In vitro the alpha-amylase (EC digestibilities of these starches were 40 (SE 3) and 62 (SE 4)% respectively at 30 min, whereas the contents of resistant starch were 77 (SE 4) and 22 (SE 4) g/kg respectively. In vivo the mung-bean starch produced lower postprandial glycaemic responses than the wheat starch (areas under the curve were: 91 (SE 28) and 208 (SE 33) mmol.min/l, P < 0.05) in normal rats (n 8). We then submitted twenty-eight normal and twenty-eight diabetic (neonatal streptozotocin on second day of birth) male Sprague-Dawley rats (6 weeks old) to a diet containing 570 g starch/kg as either mung-bean starch or wheat starch (n 14 rats/group). After 5 weeks on the diets food intakes and body weights were identical in each group. Liver and kidney weights were comparable when expressed as relative weight. The mung-bean-starch diet slightly decreased epididymal fat-pad weight (P < 0.14, ANOVA) and led to a marked decrease in adipocyte volume (P < 0.05). Plasma triacylglycerol and phospholipid concentrations were lower after the mung-bean-starch diet than after the wheat-starch diet in both normal and diabetic rats, whereas free fatty acid concentrations were lower only in normal rats. Similarly, non-fasting plasma glucose concentrations decreased (P < 0.05) in normal rats fed on mung-bean starch but not in diabetic ones (P < 0.14). Insulin levels tended to be lower, but not significantly, after mung-bean-starch feeding than after wheat starch. We conclude that the replacement of 570 g wheat starch/kg diet with mung-bean starch for 5 weeks resulted in (1) lowered non-fasting plasma glucose and free fatty acid levels in normal but not in diabetic rats, (2) a reduction in plasma triacylglycerol concentration and adipocyte volume in both normal and diabetic rats. Thus, the type of starch mixed into the diet may have important metabolic consequences in normal and diabetic rats.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Cambridge University Press
Loading ...
Support Center